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The Fine Structure of Fibers and Crystalline Polymers. 
111. Interpretation of the Mechanical 

Properties of Fibers 

J. W. S .  HEARLE, Department of Textile Technology, The Manchester 
College of Science & Technology, Manchester, England 

In the past, interpretations of the mechanical properties of fibers in 
terms of molecular structure have usually been based on the theory of 
oriented fringed micellea. In this are envisaged the deformations taking 
place in the more irregular noncrystalline material, limited to some extent 
by the presence of blocks of rigid crystalline material. A typical sche- 
matic structural picture' is shown in Figure 1. Some a ~ t h o r s ~ , ~  have 
taken account of larger-scale features of the organization of vegetable fibers. 
As has been pointed out, however, in the previous two papers of this 

the fringed micelle structure now appears to be unsatisfactory 
in some ways as a view of the fine structure of many types of fiber, and a 
fringed fibril structure has been suggested as an alternative. In this ps- 
per, the mechanical properties of fibers are reinterpreted in terms of fringed 
fibrils, and it is shown that a fibrillar structure gives a good explanation of 
the behavior of most fibers. 

BEHAVIOR OF PLANT FIBERS WlTH SPlRAL STRUCTURE 

Mechanism of Deformation 

It is convenient to deal first with the natural cellulosic fibers which have 
a spiral structure with mean helix angles ranging from about 6' in flax to 
about 30' in cotton and to more than 40° in cob and some selected leaf 
fibers. In the fringed fibril theory the structure may be regarded sche- 
matically as in Figure 2, the crystalline fibrils embedded in (and molecu- 
larly continuous with) a matrix of noncrystalline regions. The orientation 
of the molecules is along the fibrils. On extension of a fiber with this struc- 
ture, deformation may occur in the following ways: (1) by an increase in 
length of the fibrils and of the noncrystalline regions in between, (2) 
(a)  by extension like a spiral spring, with bending and twisting of the 
fibrils accompanied by (b) a reduction in volume of the fibrils, of the inter- 
fibrillar matrix of noncrystalline material, and of any void spaces present, 
and (3) by shearing of the noncrystalline regions to conform with the 
new configuration of the fibrillar structure. 

The contributions of these various effects are summarized in Table I. 
1207 
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Fig. 1. Schematic view of fringed micelle structure used in interpreting mechanical 
properties of fibers.’ 
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Fig. 2. Helical arrangement of fibrils in natural cellulose fiber. 

Deformation by S tr e tchmg 

The first type of deformation is similar to the extension of a twisted con- 
tinuous filament yarn and would be expected to fit in with the theories 
which have been shown to apply to This means that the effec- 
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tive modulus of the twisted structure would be EFl(B), where E is the 
modulus of the untwisted structure and PI(@) is a function of the helix an- 
gle e.* In the simplest theoretical treatment,8w9 Fl(e) = cos28, but Hearle7*lo 
has put forward more detailed theories having more complicated functions. 
In this paper Fl(e) will be taken to equal the function which is referred to 
as FZ(a, ul, uY) in Hearle’s second theoretical paper.? This function shows 
the best fit with the experimental results for twisted yarns. It is assumed 
that the volume of the twisted structure remains constant during the de- 
formation, as illustrated in Figure 3. 

The combined effects of deformation due to stretching in both crystalline 
and noncrystalline regions can be covered by putting E = yE, + (1 - 
?)En where y = volume of crystalline material per total fiber volume, 
E, = Young’s modulus of crystalline regions, parallel to the fibril axis, and 
En = Young’s modulus of noncrystalline regions. It is possible that En 
will be much smaller than E, so that the second term will be almost neg- 
ligible and the effective modulus would be YE,, that is, about z/3 E, in nab 
ural cellulose fibers. 

Deformation in the Manner of a Spring 
It is shown in Appendix I that, for the extension of each fibril like that of 

an independent spiral spring, the effective modulus would be: 

~ ( T / R ) ~  cos e [%E,/(E, sin% + 2n0 cosze) J 
where T = fibril radius, R = helix radius, and no = shear modulus. The 
last term, in brackets [ 1, must be less than either no or E,, whichever is 
greater, and if, as is probable, no << E,,, then it tends to G/sin28. The 
factors y and cos 0 will have values slightly less than 1. However, the 
second term, ( T / R ) ~ ,  will equal for a fibril of radius 100 A. at the out- 
side of a fiber of radius 10 p ,  and this means that the modulus will be very 
small except for an infinitesimal area at  the center of the fiber; thus the 
resistance to deformation due to the stretching of fibrils like springs will 
be so small as to be completely negligible. 

However, the springlike extension with a constant fibrillar length involves 
a reduction in volume. In an ordinary spring this can happen because the 
center of the spring is open, but in a closely packed array of springs, as in 
the spiral fibrillar structure, there will be a resistance to volume reduction. 
It is shown in Appendix I1 that if the volume changes were the determining 
factor we should have: 

Effective modulus = K(l - 2 cot28)2 
* In the rather general analysis of this paper, the problem of the exact definition of 8 

is not examined. In the theories on twisted yarn the angle used is u, the surface angle 
of twist in a structure in which the length of one turn of twist is constant throughout the 
cross section so that the helix angle decreases from Q at the outaide to zero at the center 
of the yarn. In natural plant fibers it may usually be more correct to take t9 aa constant 
throughout the cross section: this will cause Fde)  to decresse somewhat more rapidly 
withe. 
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Fig. 3. Types of deformation in twisted structure. 

where K = [(l - c+/(l - y)lkn + (d/y)ka, kn being bulk modulus of 
noncrystalline regions, ko bulk modulus of crystalline regions, and a the 
fraction of total volume change occurring in noncrystalline regions, or 

If, as would be expected, k, >> k,, i.e., if the fibrils can be regarded as 
incompressible, then a << 1 and K = kn/(I - y) rr 3kn for a natural cel- 
lulose fiber. 

The above argument is based on the assumptions that (a) the fiber can- 
not untwist when it is extended and (b)  the fiber is a solid cylinder. If 
either of these conditions is not satisfied, then the forces developed will be 
less. If untwisting is possible, as it may well be locally in cotton, where the 
direction of the spiral alternates frequently, then the volume reduction will 
be less and, in some circumstances, could be zero. 

If there is a void space at  the cent,er of the fiber, the volume reduction 
could occur by a reduction of the volume of this void space, and the com- 
pression of the fiber material would be much decreased. However, such 

Y kn/[(l - Y) ka + Y ~ I .  
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a deformation is likely to be resisted by other smaller forces, and a factor 
proportional to (1 - 2 cot2@* will still represent the magnitude of the de- 
formation which has to be accommodated. The effect of void spaces can 
therefore be regarded as causing a reduction in the effective value of K ,  
the parameter including the bulk moduli. 

Shear Deformation in Noncrystalline Regions 

In considering the extension of a twisted yarn or of a system of spiral 
springs, it is tacitly assumed that the individual filaments are free to slide 
over one another in adjusting themselves to the new conformation. This 
will not be possible in the fringed fibril structure, because of the continuity 
of the molecular network through crystalline and noncrystalline regions. 
Some shear deformation of the noncrystalline matrix must take place, and 
this will add a further resistance to the extension of the fiber. The con- 
tribution will not be easy to calculate, but it will probably not be a large 
one. It has been included in Table I as the quantity X, .  

Combination of Mechanisms 

Neglecting the last factor X,, we see that there are two possible mecha- 
nisms of deformation of the spiral structure (1) due to an increase in length 
of fibrils at constant volume, with a modulus of EFI(0), and (2) due to 
springlike extension at constant fibril length, accompanied by volume com- 

Fig. 4. Graphs of E R (  e) and K( 1 - 2 c o t w )  versus e. 
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Fig. 5. Combination of two mechanisms in aeries. 

pression, with a modulus K(l - 2 cot26)2. These two functions are plotted 
for various values of E and K in Figure 4. It will be seen that for low val- 
ues of 6, K(l - 2 cot2@* >> EFl(6), showing that the springlike deforma- 
tion with volume reduction can be ignored, and the fibril modulus will equal 
EFl(6). . But K(l - 2 cot26)2 is much more sensitive to 6 than is EF1(8), 
so that a t  high values of 6 where K(l - 2 cot26)2 << EFl(6) the springlike 
mechanism will predominate and the fiber modulus will equal K(l - 2 
cot28)2. 

The two mechanisms wil l  act like two springs in series, as in Figure 5, 
each tending to relieve the stresses in the other by an interchange of strain, 
and so for intermediate values of 6 we shall have: Effective modulus due to 
combined factors 

EFl (6) [K(1 - 2 cot%)'] 
EFl(f3) + K(l - 2 cot*8)2 

This form of equation will not necessarily be exactly correct, since the 
interchange of strain between the two mechanisms is not quite aa simple 
aa between two springs in series becsuse of the geometry of the system, but 
it should be a reasonable approximation for intermediate values. A selec- 
tion of intermediate curves is included in Figure 4. 

- - 

Comparison with Experiment 

In Figure 6, eq. (4) has been fitted to values found by Spark et al." for 
the modulus of two sisal fiber cells having spiral angles of 10 and 42O re- 
spectively. For the fitted curve, E = 2180 and K = 229 Kg./mm.2. 
Neglecting the contribution of the noncrystalline regions, we should have 
E = y E, == 2/3Ec. TreloarI2 has calculated a value of 5770 kg./mm.2 
for the modulus of cellulose crystals, giving S/a E, = 3900 kg./mm.l. 
The fitted value of E is of the right order of magnitude, although somewhat 
lower than the theoretical value (which was itself considered by Treloar 
to be too low an estimate). The difference may, in part, be explained by 
the occurrence of creep: dynamic values of modulus of sisal are appreci- 
ably higher. 

If the fibrils are assumed to be incompressible, K should equal kn/(l  
- 7 )  rr 3k,. This fitted value of K would thus correspond to a bulk 
modulus in the noncrystalline regions of 76 kg./mm.2. It is rather low in 
comparison, for example, with a bulk modulus of about 200 kg./mm.2 
for a soft rubber, owing partly, perhaps, to the fact that the full volume 
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Fig. 6. Comparison of theory and experiment for various fibere: leaf; (8) sisal; ( 0 )  
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change in the material does not occur because of untwisting or a reduction 
in void space at the center of the fiber. Barkas13 has pointed out that the 
saturation moisture absorption of wood, which is reduced from about 
22%, when swelling is allowed, to 13% at constant gross volume, is limited 
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to about 1.5% when the volume of the wood cell wall is held constant; 
this illustrates the great potentialities for expansion into the void space. 

It may also be noted that increasing the value of k, to a more reasonable 
value, i.e., 200 kg./mm.2, so that K = 600, would give a modulus of 520 
kg./mm.2 at 42' as against the experimental value of 315 kg./mm.2. Con- 
sidering the crudity of the analysis this is still a reasonable fit. 

Included in Figure 6 are values of the modulus of a variety of cotton fjbers 
measured by Meredith2 and of some bast, leaf, and coir fibers measured by 
Stout and Jenkin~.~  They are not very far from the theoretical curve 

Fig. 7. Eyring'e three-elernent model of two ideal springs and nonlinear dashpot. 

combining the two mechanisms, except that there is a very wide spread of 
values for the bast fibers. Some of these results will be influenced by the 
fact that the commercial bast and leaf fibers are made up of an aggregate 
of plant cells and contain varying amounts of lignii, pectin, and other ma- 
terials. The values for cotton are rather better fitted by the curve with 
K = 93. 

Influence of Time and Moisture 

Provided the 
stresses are not too great, the best agreement between experiment and the- 
ory has been the three-element model given by Tobolsky and Eyring,14 
Figure 7, which incorporates, on the basis of reaction rate theory, a dash- 
pot with a hyperbolic sine law of flow. Such a model could be interpreted 
according to the ideas given above in the following way. The arm con- 
taining the spring would represent the elastic extension of the crystalline 
fibrils, given by the term rEcF,(B) in Table I, and to a lesser extent by the 
compression of fibrils, that is, the term (cr2/r)kc(l - 2 The other 
arm would represent the viscoelastic compression of the noncrystalline 
material, given by the term [ ( l  - a)2/(1 - r)]kn(l - 2 cot20)2 and also 
by the contributions of other deformations in the noncrystalline regions, 
that is, the terms (1 - r)EnFl(B) and X,. There may also be some time- 

The mechanical behavior of fibers is time-dependent. 
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dependent element in the deformation of the crystalline fibrils due to re- 
arrangement of the molecules in the imperfect parts of the crystal. 

When the stresses become larger, secondary (nonrecoverable) creep 
also occurs, so that Eyring’s model ceases to be valid. This secondary 
creep would be a further feature of the deformation of the noncrystalline 
regions. 

Since the 
water does not penetrate the crystalline regions, this can be due only to 
changes in the interflbrillar material. In cotton and other fibers with high 
spiral angle, it can be explained by a change in k n ,  the bulk modulus of the 
noncrystalline regions. However, the change is as marked in a highly 
oriented fiber, such as ramie, as it is in cotton,16 showing that the non- 
crystalline regions are playing an important part even where the extension 
of the fibrils appears to be the dominant mechanism. This must be due 
partly to the influence of the second term (1 - 7)En in the expression for 
E-in other words, in the dry fibers there is appreciable resistance to ex- 
tension of the noncrystalline regions, with En comparable to E,-and partly 
to the influence of the neglected factor Xn, that is, the shearing forces aris- 
ing from the fitting of the noncrystalline regions into the new configuration, 
which will also be expected to be much greater in a heavily crosslinked, 
dry structure. Another factor which will have some effect is the decrease 
in spiral angle resulting from the swelling of the fiber. 

The moduli of plant fibers decrease as water is absorbed. 

Fiber Breakage 

One may expect break to occur when the stress concentrations rise above 
a certain level, so that, in general, the fiber strength should decrease with 
spiral angle in the same way that the modulus decreases. This is, in fact, 
found, although there is a good deal of scatter which reflects the varying 
incidence of flaws and points of weakness in the structures of different 
fibers. 

If the fibers are dry, the comparative rigidity of the noncrystalline ma- 
terial wil l  restrict the freedom of movement of the fibrils and so promote 
high stress concentrations whereas, when the fiber is wet, there will be 
greater freedom and lower stress concentrations and the fiber strength 
will increase, as is found experimentally in the natural cellulosic fibers. 
A similar effect was found in model yarns when the strength fell on glueing 
together of the filaments.16 

APPLICATION TO OTHER FIBERS 

The Effects of Irregular Orientation 

The spiral arrangements of fibrils in plant fibers is a convenient model to 
study because of the regularity of the geometry. In a man-made fiber, 
one can expect an irregular arrangement of the fibrils oriented more or less 
parallel to the fiber axis, as in Figure 8a. However, deformation can still 
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1 1 
Fig. 8. (a) Irregular orientation of fibrils. (a) Movements of fibrils apart and together in 

different sections, as the fibrils are straightened. 

take place in the two ways discussed for the spiral structure, namely by a 
simple extension of the fibrils and interfibrillar material (without change of 
volume) and by a straightening of the fibrils without a change in their 
lengths. The first mechanism will be resisted directly by the force needed 
to extend the fibrils; the second mechanism will be resisted chiefly by de- 
formation in the noncrystalline regions. The nature of the latter defor- 
mation will be complicated, but it is clear that, whether or not there is an 
overall volume reduction, there will certainly be local distortions as some 
neighboring fibril elements come closer together while others move farther 
apart (see Fig. 8b). 

It seems reasonable, therefore, to apply similar theoretical ideas to these 
fibers, the spiral angle e being replaced by an angle which is related to the 
mean angle of orientation of the fibrils (the crystalline regions), and the 
two functions modified to take account of the difference in structure and 
consequently in deformation. It is, of course, well known that the modulus 
of man-made fibers decreases as the degree of orientation decreases, but 
there is a lack of data adequate to test the theory. 

Regenerated Cellulose Fibers 

The interpretation of the results for rayon fibers is rather complicated. 
In ordinary rayon fibers the modulus falls to an extremely low value when 
the fiber is wet, although there is little penetration of water into the crystal- 
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line regions. Extending dry rayon is similarly very easy once the yield 
point has passed and the crosslinks in the noncrystalline regions are break- 
ing. There appear two possible explanations of this behavior: (a) the 
deformation may be due to a straightening of the fibrils resisted mainly by 
shearing forces in the noncrystalline regions, which would be very low in 
a wet fibre, or (b)  the structure may not be fibrillar but may resemble the 
fringed micelle structure, so that the influence of the noncrystalline regions 
would be dominant. There is some other evidence4 that ordinary rayon 
fibers are not fibrillar in structure. 

In contrast to ordinary rayon fibers, Fortisan and the new “polynosic” 
rayons have a high wet modulus; the decrease in modulus on wetting is 
somewhat greater than in cotton, but this may be explained by the greater 
proportion of noncrystalline material present. The modulus of dry poly- 
nosic fibers is also much higher than that of ordinary rayon fibers, and the 
yield point is not as marked. These fibers are made by processes in which 
regeneration and crystallization follow the solidification and stretching of 
the fibers, and they almost certainly have a fjbrillar structure. Their 
behavior would fit in well with the fibrillar explanation of mechanical prop- 
erties developed in this paper, and their difference from ordinary rayons 
is additional evidence that the latter do not have a fjbrillar structure. 

Synthetic Fibers 
In  synthetic fibers another factor is involved. After drawing, these fibers 

(except perhaps for the acrylic fibers) may have a more or less oriented fibril- 
lar structure, and so the theory described in this paper would be expected 
to apply. However, on releasing the drawing tension the oriented non- 
crystalline regions will tend to contract as the molecules take up more ir- 
regular conflgurations : this is an expression of rubberlike elasticity and will 
become particularly marked if the fiber is heated free of tension. The 
contraction of the noncrystalline regions will be opposed by the crystalline 
fibrils and a balance will be achieved. This balance of opposing forces 
means that the modulus of the fibers will be low. The effect should be 
very important in nylon, polyethylene, and polyvinyl chloride fibers, where 
the chain molecule is so flexible that it is easily kinked into a tightly coiled, 
random configuration, but it should be less marked in the case of a stiff 
molecule such as that of polyethylene terephthalate, which cannot easily 
bend. The modulus of Terylene (polyethylene terephthalate) is, in fact, 
much greater than that of the other fibers mentioned, which all show a con- 
siderable reduction in modulus on being heated in water a t  95OC.l’ 

Protein Fibers 
In wool and similar protein fibers the mechanical properties are largely 

determined by the highly specific molecular mechanism involved in the 
transformation from the a helix to the extended @ chain. In  silk the stress- 
strain curve is rather similar to that of Terylene, and the fibrillar theory 
should apply. 
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CONCLUSION 

The present paper has shown that the mechanical properties of most 
fibers can be reasonably interpreted in terms of a theory which views their 
structure as an assembly of fringed fibrils. The deformation of plant 
fibers having spiral structure can be explained as a combination of (1) 
stretching of the fibrillar structure without volume change, and (2) stretch- 
ing of the spiral arrangement, as a spring, without changing fibrillar length 
but with a reduction in volume, which resists the springlike extension. 
Similar ideas should be applicable to the deformation of irregularly ori- 
ented, man-made fibers, although the mathematical analysis may be more 
complex and remains to be worked out. 

The agreement between experiment and theory for the plant fibers is 
quite good, but it is worth while to summarize here the errors and approxi- 
mations involved in the theoretical treatment: 

1. The spiral geometry has been considered only in general terms, and 
the effects of such details as the variation in spiral angle through the fiber 
have not been worked out. 

2. Some contributions to the resistance to deformation have been neg- 
lected. This is probably quite justified for the resistance to springliike 
extension of the fibrils themselves, but may not be so for the other effects 
in the noncrystalline regions represented by the term X, in Table I. 

3. There is some lack of rigor in the theoretical proofs, particularly in 
the equation combining the two effects. 

4. If untwisting of the fibers, or portions of the fibers, occurs, then 
the volume reduction will be less than calculated, but other resisting forces 
will be brought into play. 

5. If there are void spaces, the volume reductions will be less but other 
resisting forces may come into play. 

6. In fibers composed of an aggregate of plant cells the overall structure 
will play some part in determining the mechanical behavior. 

Appendix I. Stretching of Fibrillar Structure Like a Spiral Spring 

It is assumed that each fibril can extend like an independent spiral spring. 
Under a load W, the fractional extension is given by:'* 

Fractional extension = (2WRz/w4)  [(sin20/n,) + (2  cos2~/E,)] 

where R = radius of helix, T = radius of fibril, 8 = helix angle, n, = shear 
modulus, and E, = Young's modulus. 

The effective area of cross section of the fiber occupied by a single fibril 
is equal to (l/r)wz sec 8: the factor l/r is introduced to allow for an ap- 
propriate amount of noncrystalline material surrounding the fibril; 
the factor sec 8, to allow for the obliquity. Therefore, stress = W/(l/r)- 
wz sec 8, giving: 

Modulus = [(rW/w2/sec e) (w4 /2WR2) ] /  [sinz8/nc + 2 cosze/Ec] 
= ~ ( T / R ) ~  cos e ncE,/(E, sh28  + 2% cos2e) 
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Appendix II. Forces Due to Volume Compression in a Model Composed 
of Inextensible Flexible Fibrils Embedded in Deformable Matrix 

Consider a circular cylinder, as shown in Figure 9a, of length h and 
radius r with a fibril of length E spiralling around it and making an angle 
6 with a line parallel to the axis of the cylinder. An “opened-out” diagram 
of the surface of the cylinder is shown in Figure 9b. It is assumed that an 
extension Ah of the cylinder takes place by the fibrils’ bending and twisting, 
like a spiral spring, the resistance to this deformation coming not from the 
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Fig. 9. (a) Spiralstructure in a cylinder. ( b )  Planar view of cylinder surface. 

force required to deform the fibrils but from the forces required to compress 
the material. It is also assumed that there is no increase in length of the 
fibrils. 

In Figure 9b we see that: 

and, therefore, for 1 = constant the change in radius Ar is given by: 

8r2rAr = -2hAh 

and neglecting terms in C AT)^ and (Ah)2: 

Ar = - ( 1 / 2 r ) ( h / 2 w ) A h  = - ( 1 / 2 r ) A h  cot 0 
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The volume of the cylinder, V ,  is n-rzh, and the change in volume AV,  
is given by : 

AV = m 2 A h  + 2mhAr 

and neglecting higher terms in Ar and Ah, 

AV = m2h[Ah /h  - (2h/r)(l/27r)(Ah/h) cot el 
= w2h(Ah /h ) ( l  - 2 cot2B) 

If the fibrils are relatively incompressible, most of this volume change will 
take place in the matrix. However, a correction for any volume change in 
the fibrils can be applied as follows. Let the volume change in the fibrils, 
with a total volume yV,  be aV,  leaving a change ( 1  - a)AV in the inter- 
fibrillar volume ( 1  - y) V .  

Volumestraininmatrix = (1  - a ) / ( 1  - y ) ( A V / V )  

Consequently we have : 

= (1  - a ) / ( 1  - y ) ( A h / h ) ( l  - 2 cot2B) 
Pressure in matrix = p ,  = (1  - a) / ( l  - y)&(Ah/h) ( 1  - 2 cotzB) 

where k, = bulk modulus of matrix. 
Similarly, for the fibrillar material, we have: 

Volume strain in crystalline material = ( a / y ) ( A V / V )  = (a/y) 

(Ah /h ) ( l  - 2 cot%) 

Pressure in crystalline material = p ,  = (a/)yk,(Ah/h)( l  - 2 cot2B). 

The internal pressure p ,  and p, must be balanced, so that we have: 

(a/y)k , (Ah/h)( l  - 2 Cot2B) = (1  - a / l  - y)k,(Ah/h)(l  - 2cot2B) 

a k d y  = (1  - a / l  - r)kn = k c / [ ( l  - rc)k + rknl 
Suppose a force F is required to stretch the cylinder by Ah; then the 
work done (= 1/2FAh, assuming Hooke's law) must equal energy stored by 
compression of material. This gives : 

Work done = '/,FAh = 1/2ZpdV 

where ZpdV is the product of pressure and volume change for the two types 
of material. But: 

FAh = ZpAV = [(l - a ) 2 / ( 1  - y)]k,(Ah/h)2(1 - 2 Cot2B)2 ( 1  - y)V 

+ (a/y)2kc(Ah/h)2(1 - 2 cot2B)2yV 
= { [ ( I  - a12/(1 - ~ > I k n  + ( a z / ~ ) k c )  [ ( ~ h / h ) '  

(1  - 2 C O ~ ~ B ) ~ V ]  

and : 

Modulus = Ez ( F / m 2 )  / ( Ah/h) = (FAIL/ V )  / ( Ah/h) 
= { [ ( I  - ( ~ ) 2 / ( i  - ~ ) ] k ,  + ( a 2 / 7 ) ~ , ) ( i  - 2 Cotze)* 
= ~ ( i  - 2 Cot2e)2 
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The mechanics of extension of plant fibers is considered in terms of a spiral arrangement 
of crystalline fibrils embedded in a noncrystalline matrix. Deformation may take place 
either by stretching of the fibrils or by extension such as that of a spiral spring. In the 
latter, the major resistance comes from the reduction in volume. The extension mech- 
anism predominates for low spird angles; the spring mechanism, for high spiral angles. 
There is reasonable agreement between the theoretical expreesions and experimental 
results. The application of similar ideas to other typea of fiber structure is considered. 

R6WUb 
On considhe le mbcanisme d’extension de fibres naturelles comme un arrangement en 

spirale de fibrilles cristallines incrustbes dans une matrice noncristalline. Il peut y avoir 
dbformation soit par btirement des fibrilles, ou par une extension comme un ressort en 
spirale. Dans la dernibre m&hode, la plus grande rbsistance provient de la rbduction de 
volume. Le mbcanisme d’extension prbdomine avec de faibles angles de spirale et le 
mbcanisme du ressort pour des grands angles. I1 eldste un accord raisonnable entre les 
expressions thbriques et lee r&ultata expbrimentaux. On envisage l’application 
d’idkes semblables h d’autrea types de structures fibre-. 

Zusammenfaseung 
Der Mechanik der Dehnung von pflanslichen Fasern wird eine Spiralanordnung 

kristalliner, in eine nicht-krietalline Matrix eingebetteter Fibrillen sugrunde gelegt. 
Deformation kann entweder durch Streckung der Fibrillen oder durch eine spiral- 
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federartige Dehnung zustande kommen. Bei letzterer stammt der Widerstand haupb 
sachlich aua der Volumsreduktion. Bei niedrigem Spiralwinkel iiberwiegt der Dehnunge- 
mechanismus, bei hohem Spiralwinkel der Federmechankmus. Es besteht eine annehm- 
bare tfberehtimmung zwischen den theoretischen Ausdriicken und den Versuchsergeb- 
niesen. Die Anwendung ahnlicher Vorstellungen auf andere Fsserstrukturtypen wird in 
Betracht gezogen. 
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